Hydroponics and Technology

Use of water for purposes that do not promote purity and deliberately pollute and contaminate it must stop. Use of water for hydro-electric power and recycling systems that purify the water need to be used. The technology and need is there. Water must be protected and a system to improve dispersion of that resource must be put in place. Does this mean more government regulation? Not if the private sector steps up and produces a viable product to conserve and purify our existing resources. Hydroponics and Aeroponics are a step toward solving this problem

Hydroponics

Hydroponics is a method of growing plants using mineral nutrient solutions, in water, without soil. Terrestrial plants may be grown with their roots in the mineral nutrient solution only or in an inert medium, such as perlite, gravel, mineral wool, or coconut husk.

Researchers discovered in the 18th century that plants absorb essential mineral nutrients as inorganic ions in water. In natural conditions, soil acts as a mineral nutrient reservoir but the soil itself is not essential to plant growth. When the mineral nutrients in the soil dissolve in water, plant roots are able to absorb them. When the required mineral nutrients are introduced into a plant's water supply artificially, soil is no longer required for the plant to thrive. Almost any terrestrial plant will grow with hydroponics. Hydroponics is also a standard technique in biology research and teaching.

History

The very earliest published work on growing terrestrial plants without soil was the 1627 book, Sylva Sylvarum by Francis Bacon, printed a year after his death. Water culture became a popular research technique after that. In 1699, John Woodward published his water culture experiments with spearmint. He found that plants in less-pure water sources grew better than plants in distilled water. By 1842, a list of nine elements believed to be essential to plant growth had been compiled, and the discoveries of the German botanists Julius von Sachs and Wilhelm Knop, in the years 1859-65, resulted in a development of the technique of soilless cultivation. Growth of terrestrial plants without soil in mineral nutrient solutions was called solution culture. It quickly became a standard research and teaching technique and is still widely used today. Solution culture is now considered a type of hydroponics where there is no inert medium.

In 1929, William Frederick Gericke of the University of California at Berkeley began publicly promoting that solution culture be used for agricultural crop production. He first termed it aquaculture but later found that aquaculture was already applied to culture of aquatic organisms. Gericke created a sensation by growing tomato vines twenty-five feet high in his back yard in mineral nutrient solutions rather than soil. By analogy with the ancient Greek term for agriculture, geoponics, the science of cultivating the earth, Gericke coined the term hydroponics in 1937 (although he asserts that the term was suggested by W. A. Setchell, of the University of California) for the culture of plants in water (from the Greek hydro-, "water", and ponos, "labour").

Reports of Gericke's work and his claims that hydroponics would revolutionize plant agriculture prompted a huge number of requests for further information. Gericke refused to reveal his secrets claiming he had done the work at home on his own time. This refusal eventually resulted in his leaving the University of California. In 1940, he wrote the book, Complete Guide to Soilless Gardening.

Two other plant nutritionists at the University of California were asked to research Gericke's claims. Dennis R. Hoagland and Daniel I. Arnon wrote a classic 1938 agricultural bulletin, The Water Culture Method for Growing Plants Without Soil, debunking the exaggerated claims made about hydroponics. Hoagland and Arnon found that hydroponic crop yields were no better than crop yields with good-quality soils. Crop yields were ultimately limited by factors other than mineral nutrients, especially light. This research, however, overlooked the fact that hydroponics has other advantages including the fact that the roots of the plant have constant access to oxygen and that the plants have access to as much or as little water as they need. This is important as one of the most common errors when growing is over- and under- watering; and hydroponics prevents this from occurring as large amounts of water can be made available to the plant and any water not used, drained away, recirculated, or actively aerated, eliminating anoxic conditions, which drown root systems in soil. In soil, a grower needs to be very experienced to know exactly how much water to feed the plant. Too much and the plant will not be able to access oxygen; too little and the plant will lose the ability to transport nutrients, which are typically moved into the roots while in solution. These two researchers developed several formulas for mineral nutrient solutions, known as Hoagland solution. Modified Hoagland solutions are still used today.

One of the early successes of hydroponics occurred on Wake Island, a rocky atoll in the Pacific Ocean used as a refuelling stop for Pan American Airlines. Hydroponics was used there in the 1930s to grow vegetables for the passengers. Hydroponics was a necessity on Wake Island because there was no soil, and it was prohibitively expensive to airlift in fresh vegetables.

In the 1960s, Allen Cooper of England developed the Nutrient film technique. The Land Pavilion at Walt Disney World's EPCOT Center opened in 1982 and prominently features a variety of hydroponic techniques. In recent decades, NASA has done extensive hydroponic research for their Controlled Ecological Life Support System or CELSS. Hydroponics intended to take place on Mars are using LED lighting to grow in different color spectrum with much less heat.

In 1978, hydroponics pioneer Howard Resh published the first edition of his book "Hydroponics Food Production." This book (now updated) spurred what has become known as the 3-part base nutrients formula that is still a major component of today's hydroponics gardening. Resh later went on to publish other books, and is currently in charge of a hydroponics research and production facility in the Caribbean.

Origin

Soilless culture

Gericke originally defined hydroponics as crop growth in mineral nutrient solutions. Hydroponics is a subset of soilless culture. Many types of soilless culture do not use the mineral nutrient solutions required for hydroponics. Billions of container plants are produced annually, including fruit, shade, and ornamental trees, shrubs, forest seedlings, vegetable seedlings, bedding plants, herbaceous perennials, and vines. Most container plants are produced in soilless media, representing soil less culture. However, most are not hydroponics because the soilless medium often provides some of the mineral nutrients via slow release fertilizers, cation exchange, and decomposition of the organic medium itself. Most soil less media for container plants also contain organic materials such as peat or composted bark, which provide some nitrogen to the plant. Greenhouse growth of plants in peat bags is often termed hydroponics, but, in the technical sense, it is not because the medium provides some of the mineral nutrients.

Plants that are not traditionally grown in a climate would be possible to grow using a controlled environment system like hydroponics. During World War II, produce was grown with hydroponics on the barren Pacific Islands. According to a 1938 Times magazine article, this was one of the first times that commercial use of hydroponics was used on such a large scale to feed people. This group of islands was used as a refuelling stop for Pan-Am Airways, and the food was used to feed the staff and crew. This means that salad greens could be grown in Antarctica or even the Mojave Desert. NASA has also looked to utilize hydroponics in the space program. Ray Wheeler, plant physiologist at Kennedy Space Center's Space Life Science Lab, believes that hydroponics will create advances within space travel. He terms this as "a life support system with the biological component of growing plants — called a bioregenerative life support system. It has several benefits for NASA."[citation needed] These scientists are researching how different amounts of light, temperature and carbon dioxide, along with plant species can be grown and cultivated on planets like Mars.

Advantages

Some of the reasons why hydroponics is being adapted around the world for food production are the following:

  • No soil is needed
  • The water stays in the system and can be reused - thus, lower water costs
  • It is possible to control the nutrition levels in their entirety - thus, lower nutrition costs
  • No nutrition pollution is released into the environment because of the controlled system
  • Stable and high yields
  • Pests and diseases are easier to get rid of than in soil because of the container's mobility

Today, hydroponics is an established branch of agronomy. Progress has been rapid, and results obtained in various countries have proved it to be thoroughly practical and to have very definite advantages over conventional methods of horticulture. The two chief merits of the soil-less cultivation of plants are, first, hydroponics produces much higher crop yields, and, second, hydroponics can be used in places where in-ground agriculture or gardening are not possible.

Disadvantages

Without soil as a buffer, any failure to the hydroponic system leads to rapid plant death. Other disadvantages include pathogen attacks such as damp-off due to Verticillium wilt caused by the high moisture levels associated with hydroponics and over watering of soil based plants. Also, many hydroponic plants require different fertilizers and containment systems.

Techniques

The two main types of hydroponics are solution culture and medium culture. Solution culture does not use a solid medium for the roots, just the nutrient solution. The three main types of solution cultures are static solution culture, continuous-flow solution culture and aeroponics. The medium culture method has a solid medium for the roots and is named for the type of medium, e.g., sand culture, gravel culture, or rockwool culture.

There are two main variations for each medium, sub-irrigation and top irrigation[specify]. For all techniques, most hydroponic reservoirs are now built of plastic, but other materials have been used including concrete, glass, metal, vegetable solids, and wood. The containers should exclude light to prevent algae growth in the nutrient solution.

Static solution culture

In static solution culture, plants are grown in containers of nutrient solution, such as glass Mason jars (typically, in-home applications), plastic buckets, tubs, or tanks. The solution is usually gently aerated but may be un-aerated. If un-aerated, the solution level is kept low enough that enough roots are above the solution so they get adequate oxygen. A hole is cut in the lid of the reservoir for each plant. There can be one to many plants per reservoir. Reservoir size can be increased as plant size increases. A home made system can be constructed from plastic food containers or glass canning jars with aeration provided by an aquarium pump, aquarium airline tubing and aquarium valves. Clear containers are covered with aluminium foil, butcher paper, black plastic, or other material to exclude light, thus helping to eliminate the formation of algae. The nutrient solution is changed either on a schedule, such as once per week, or when the concentration drops below a certain level as determined with an electrical conductivity meter. Whenever the solution is depleted below a certain level, either water or fresh nutrient solution is added, A Mariotte's bottle, or a float valve, can be used to automatically maintain the solution level. In raft solution culture, plants are placed in a sheet of buoyant plastic that is floated on the surface of the nutrient solution. That way, the solution level never drops below the roots.

Continuous-flow solution culture

In continuous-flow solution culture, the nutrient solution constantly flows past the roots. It is much easier to automate than the static solution culture because sampling and adjustments to the temperature and nutrient concentrations can be made in a large storage tank that has potential to serve thousands of plants. A popular variation is the nutrient film technique or NFT, whereby a very shallow stream of water containing all the dissolved nutrients required for plant growth is recirculated past the bare roots of plants in a watertight thick root mat, which develops in the bottom of the channel, has an upper surface that, although moist, is in the air. Subsequent to this, an abundant supply of oxygen is provided to the roots of the plants. A properly designed NFT system is based on using the right channel slope, the right flow rate, and the right channel length. The main advantage of the NFT system over other forms of hydroponics is that the plant roots are exposed to adequate supplies of water, oxygen, and nutrients. In all other forms of production, there is a conflict between the supply of these requirements, since excessive or deficient amounts of one results in an imbalance of one or both of the others. NFT, because of its design, provides a system where all three requirements for healthy plant growth can be met at the same time, provided that the simple concept of NFT is always remembered and practised. The result of these advantages is that higher yields of high-quality produce are obtained over an extended period of cropping. A downside of NFT is that it has very little buffering against interruptions in the flow, e.g., power outages. But, overall, it is probably one of the more productive techniques.

The same design characteristics apply to all conventional NFT systems. While slopes along channels of 1:100 have been recommended, in practice it is difficult to build a base for channels that is sufficiently true to enable nutrient films to flow without ponding in locally depressed areas. As a consequence, it is recommended that slopes of 1:30 to 1:40 are used. This allows for minor irregularities in the surface, but, even with these slopes, ponding and water logging may occur. The slope may be provided by the floor, or benches or racks may hold the channels and provide the required slope. Both methods are used and depend on local requirements, often determined by the site and crop requirements.

As a general guide, flow rates for each gully should be 1 liter per minute. At planting, rates may be half this and the upper limit of 2 L/min appears about the maximum. Flow rates beyond these extremes are often associated with nutritional problems. Depressed growth rates of many crops have been observed when channels exceed 12 metres in length. On rapidly growing crops, tests have indicated that, while oxygen levels remain adequate, nitrogen may be depleted over the length of the gully. As a consequence, channel length should not exceed 10–15 metres. In situations where this is not possible, the reductions in growth can be eliminated by placing another nutrient feed halfway along the gully and reducing flow rates to 1 L/min through each outlet

Let Hydronaturals design a hydroponics system for you. We use the latest methods and technologies available and can design one for restaurants, commercial growers and individuals. Contact Us Today.